

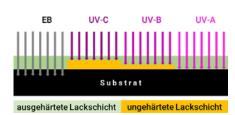
Härtung flüssiger Beschichtungen auf Formteilen

Robotergesteuerte Härtung durch Elektronenbehandlung

Die Kombination mit einem Industrieroboter ermöglicht die Integration in die Lackierlinie

Herausforderung

- Hoher Energieverlust und Emission flüchtiger organischer Bestandteile (VOC) bei der industriellen thermischen Trocknung flüssiger Beschichtungen
- Overspray kann nicht recycelt werden


Lösung

 zielgerichteter Energieeintrag in die flüssige Beschichtung durch Elektronenstrahlhärtung (ESH)

Vergleich zu konventionellen Systemen

Vorteile ESH zur UV-Härtung (UVH)

- Höhere Aushärtegrade: bessere Chemikalien- und Kratzbeständigkeit
- Höhere Produktgeschwindigkeiten im Härtungsprozess
- Härtung von pigmentierten, hochgefüllten & dicken Beschichtungen
- Verzicht auf toxische Photoinitiatoren
- Geringe Substraterwärmung

Vergleich der Eindringtiefe von UVH und ESH

Vorteile ESH zum thermischen Trocknungsprozess

- Geringer Energieaufwand
- Geringe CO₂ Freisetzung
- Hoher Durchsatz
- Hohe Effizienz durch zielgerichteten Energieeintrag
- Kein Einsatz von Lösemitteln

Parameter	thermisch	ESH
Feststoffgehalt der flüssigen Beschichtung	60 %	100 %
Masse der festen Lackschicht pro m²	20 g	20 g
VOC pro m² bei einer Lösemitteldichte von 0,9 g/cm³	12 g	0 g
Energiebedarf	~0,091 kWh/m²	~0,028 kWh/m²
CO ₂ -Freisetzung durch Lösemittelverbrennung	37 g/m²	0 g/m²

Energieverbrauch und CO₂-Freisetzung für thermische Trocknung und ESH